Proton slip of the chloroplast ATPase: its nucleotide dependence, energetic threshold, and relation to an alternating site mechanism of catalysis.
نویسندگان
چکیده
The F-ATPase of chloroplasts couples proton flow to ATP synthesis, but is leaky to protons in the absence of nucleotides. This "proton slip" can be blocked by small concentrations of ADP or by inhibitors of the channel portion, CF0. We studied charge flow through the ATPase by flash spectrophotometry and analyzed the inhibition of proton slip by nucleotides, phosphate/arsenate, and insufficient proton motive force. The following inhibition constants (at given background concentrations) were observed: ADP, 0.2 microM (0.5 mM P(i)); ADP, 13.4 microM (no P(i)); P(i), 43 microM (1 microM ADP); GDP, 2.5 microM (0.5 mM P(i)); ATP, 2 microM. ADP and P(i) mutually lowered their respective inhibition constants. Phosphate could be replaced by arsenate. Proton slip occurred only if the proton motive force exceeded a certain threshold, similar to that for ATP synthesis. The inhibition of proton slip by ADP and GDP qualified the respective nucleotide binding sites as belonging to the subset of two (or three) potentially catalytic sites out of the total of six. We interpreted the ADP-induced transition between different conduction states of the ATPase from "slipping" to "closed" to "coupled" as a consequence of the alternating site mechanism of catalysis. Whereas the proton translocator idles in the absence of nucleotides, the high-affinity binding of the first ADP/P(i) couple to one site clutches proton flow to some (conformational) change that can only be executed after the binding of another ADP/P(i) couple to a second site. From there on these sites alternate in the catalytic cycle. An entropic machine is presented which likewise models proton slip, unisite, and multisite ATP synthesis and hydrolysis.
منابع مشابه
Monte Carlo simulation from proton slip to "coupled" proton flow in ATP synthase based on the bi-site mechanism
ATP synthase couples proton flow to ATP synthesis, but is leaky to protons at very low nucleotide concentration. Based on the bi-site mechanism, we simulated the proton conduction from proton slip to "coupled" proton flow in ATP synthase using the Monte Carlo method. Good agreement is obtained between the simulated and available experimental results. Our model provides deeper insight into the n...
متن کاملProton slip in the ATP synthase of Rhodobacter capsulatus: induction, proton conduction, and nucleotide dependence.
FOF1-ATP synthase converts two energetic "currencies" of the cell (ATP and protonmotive force, pmf) by coupling two rotary motors/generators. Their coupling efficiency is usually very high. Uncoupled proton leakage (slip) has only been observed in chloroplast enzyme at unphysiologically low nucleotide concentration. We investigated the properties of proton slip in chromatophores (sub-bacterial ...
متن کاملDifferences between two tight ADP binding sites of the chloroplast coupling factor 1 and their effects on ATPase activity.
Purified chloroplast ATP synthase (CF1) contains 1.2-2 mol of tightly bound ADP/mol of enzyme that resists removal by gel filtration or dialysis. CF1 was depleted of its endogenous nucleotide by treatment with alkaline phosphatase. Tightly bound nucleotide was demonstrated not to have an essential structural role. CF1 depleted of endogenous nucleotide retains its ability to catalyze Ca2+- and M...
متن کاملIdentification of the betaTP site in the x-ray structure of F1-ATPase as the high-affinity catalytic site.
ATP synthase uses a unique rotary mechanism to couple ATP synthesis and hydrolysis to transmembrane proton translocation. The F(1) subcomplex has three catalytic nucleotide binding sites, one on each beta subunit, with widely differing affinities for MgATP or MgADP. During rotational catalysis, the sites switch their affinities. The affinity of each site is determined by the position of the cen...
متن کاملKinematics of the Dena Fault and Its Relation to Deep-Seated Transverse Faults in Zagros Fold-Thrust Belt, Iran
The NNW-trending Dena Fault, with 140 km length, cuts the major structures of Zagros Fold-Thrust Belt in Borujen region. The fault has divided the region in two zones, in which different structural, andmorphological features as well assedimentation and seismtectonic characteristics have developed. This study presents a new interpretation for the kinematics of Dena Fault based on field evidence....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 32 32 شماره
صفحات -
تاریخ انتشار 1993